Nous sommes sinthlab à l’Université de Montréal et à Mila.

sinth reflète notre double perspective — en tant que laboratoires d’Intelligence Synthétique & NeuroThéorie et d’Intégration Sensorimotrice & Thérapies Neuroingénieriques — où nous fusionnons l’IA avec des expériences en neurophysiologie afin d’étudier comment le cerveau biologique coordonne le comportement.

En reliant les découvertes fondamentales en neurosciences aux innovations en NeuroIA, nous orientons le développement des interfaces neuronales de prochaine génération pour la réadaptation, la restauration et l’augmentation.


Recherche

Nos recherches sont interdisciplinaires et très variées. Les projets décrits ci-dessous ne représentent qu’une petite partie du travail en cours dans notre laboratoire.

Les computations neuronales sous-jacentes au comportement animal

Le laboratoire vise à comprendre comment l’activité concertée de grandes populations de neurones contrôle les comportements complexes que nous produisons. Nous combinons des expériences de neurophysiologie avec des méthodes en neurosciences computationnelles et en intelligence artificielle afin d’identifier et de caractériser les dynamiques sous-jacentes à l’activité neuronale observée dans l’ensemble du cerveau. Nous étudions comment l’évolution, le développement et l’apprentissage façonnent notre cerveau au niveau computationnel.

En savoir plus: Nature 2023, bioRxiv 2024, Nature Neuroscience 2020, Neuron 2018, Neuron 2017


Interfaces entre circuits artificiels et biologiques

Nous nous appuyons sur l’apprentissage automatique et l’intelligence artificielle pour développer de nouvelles classes de « décodeurs » neuronaux et des outils de prévision des séries temporelles de la dynamique neuronale. Notre objectif est de les intégrer de manière fluide en boucle fermée avec les dynamiques en cours dans le cerveau. Ces innovations constitueront des étapes cruciales vers l’adoption clinique à grande échelle de technologies de neuromodulation en boucle fermée pour traiter les troubles moteurs et cognitifs.

En savoir plus: bioRxiv 2020b, Nature Neuroscience 2022, Nature Medicine 2023


Approches inspirées du cerveau pour la NeuroIA

Nous développons des outils computationnels pour les neurosciences, en nous appuyant sur l’IA afin de démêler l’immense complexité du cerveau des animaux. En parallèle, nous nous inspirons des principes fondamentaux de l’organisation cérébrale pour concevoir de nouvelles approches en IA répondant à des objectifs d’apprentissage automatique tels que l’apprentissage en continu.

En savoir plus: bioRxiv 2020a, CONB 2020

Équipe


Matthew G. Perich
PI

I am an Assistant Professor in the Department of Neuroscience at the Université de Montréal and an Associate Member of Mila (Quebec Artificial Intelligence Institute). I work broadly in the field of neuroscience, from how evolution and neurodevelopment shape brain computations, to mechanisms of brain circuits that give rise to affective and motor behaviors, to neural engineering and brain computer interfaces. A key aspect of my research is pushing the field of NeuroAI from a strong rooting in neuroscience principles. When I'm not science-ing, I enjoy making music, photography, and cooking my way across the globe. Previously: Icahn School of Medicine at Mount Sinai / University of Geneva / Northwestern University / EPFL / University of Pittsburgh

email | website | scholar | code | bsky

Olivier Codol
Postdoc
(co-supervisor: Guillaume Lajoie)
I am a post-doctoral researcher in computational neuroscience interested in unraveling the algorithmic basis of learning in neural control of movements. Particularly, I focus on fundamental motion such as reaching movements and tabula rasa learning that occurs in infancy, as opposed to sequential and compositional skills that require re-arrangement of pre-acquired movements. I currently work on disentangling which learning rules best match neural dynamics of learning, and what are the most efficient and stable ways to improve performance in complex control problems, including non-linear and over-determined (redundant) control. To that end, I leverage biomechanical modeling, deep recurrent neural networks, and reinforcement learning一particularly policy gradient methods, which are best suited for continuous control problems.

scholar | code | bsky

Page Hayley
Postdoc
(co-supervisor: Numa Dancause)
I am a post-doctoral fellow in neurosciences at the Université de Montréal and associated with Mila as of Fall 2024. Here, I am studying the neurophysiologic basis of movement production in preclinical models for the ultimate goal of developing rehabilitative strategies after acquired injury. I am specifically interested in the coordination of neural activity across different cortical areas with an emphasis on interhemispheric dynamics and how they are integrated downstream at the level of the spinal cord resulting in muscle activation. Towards this end, I aim to probe these circuits using both electrical and optogenetic stimulation and relate it to the motor network during naturalistic behavior.

email | scholar

Margaux Asclipe
PhD Student

I joined the sinthlab lab as a Ph.D. candidate in January 2025. Having a mixed background in biology and mathematics, I am interested in using different approaches to study the complexity of cognitive functions. More precisely, I aim to understand the computations underlying the integration of sensory-motor feedback from both computational and physiological approaches.

scholar | code

Reza Asri
PhD Student

I'm a Ph.D. candidate navigating the wondrous realms of Neuroscience at Université de Montréal and Mila. In this exciting journey, I'm exploring the fascinating blend of artificial intelligence and neuroscience. My mission involves using powerful AI tools to unravel the secrets hidden within neurons and physiological data. I'm particularly captivated by AI models that mimic brain circuits involved in sensory-motor loops to decode the brain's mysterious language, uncovering how it processes information and choreographs our movements. We unearth the fundamental neural mechanisms behind sensation and motor control.

scholar | code

Anirudh Jamkhandi
PhD Student

I am a PhD student at Mila and Université de Montréal, where my research intersects artificial intelligence and neuroscience, focusing on the brain’s exceptional abilities in motor control, data and energy efficiency, learning dynamics, and adaptation. I am fascinated by how the brain integrates information from various regions to produce complex behaviors and adapt to novel environments. Inspired by these biological processes, I incorporate inductive biases into deep learning models, leveraging insights from the brain’s adaptation and learning mechanisms. By embedding these biologically inspired principles, I aim to enhance the efficiency, scalability, and adaptability of AI systems. My goal is to draw parallels between neural mechanisms and AI architectures, advancing our understanding of the brain while developing more robust and versatile AI models.

email | scholar | code | bsky

Le Thuy Duong Nguyen
PhD Student
(co-supervisor: Blake Richards)
I’m an incoming graduate student working at the intersection of neuroscience and AI. My research focuses on developing scalable foundation models for neuroscience that can integrate across recording modalities, species, and behavioural tasks to support translational applications in movement restoration. Previously, I contributed to open-source neuroimaging tools in Prof. Sylvain Baillet’s lab to remove barriers to broader participation in the field, and designed a novel reinforcement learning environment inspired by traditional Indigenous cultural value systems under Prof. Blake Richards’ guidance. With an interdisciplinary background in cognitive science, I’m passionate about open science, community-building, and developing human-centered technologies that drive positive clinical and societal outcomes.

website | bsky

Avery Ryoo
PhD Student
(co-supervisor: Guillaume Lajoie)
I am a graduate student interested in bridging the gap between natural and artificial intelligence. Primarily, I am driven by the fact that certain abilities, notably efficient multimodal perception and compositional reasoning, are natural for humans but fickle for our most powerful AI systems. I wish to investigate the conditions under which these capabilities emerge for neural networks, and then use these insights to design more robust, interpretable, and sample-efficient generative frameworks — a crucial step in mitigating the widening resource disparity in an era of increasingly large models. My other interests include deep generative models, neural decoding, and the Toronto Raptors.

website | scholar | code | bsky

Ali Korojy
MSc Student

I am a mystery...

Alumni


Nerea Carbonell Muñoz | Grad Student
Diana Haq | Intern
Kelty Antilus | Intern

Collaborateurs(rices)

Publications sélectionées


Pour voir toutes les publications: Google Scholar

Info

Notre laboratoire fait partie du Département de neurosciences de la Faculté de médecine de l’Université de Montréal.

Nous sommes situés à:
Pavillon Paul G. Desmerais
2960 Chemin de la Tour
Montréal QC H3T 1T9




Financement